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a b s t r a c t

Rotating and stably stratified Boussinesq flow is investigated for Burger number unity in domain aspect
ratio (height/horizontal length) δ < 1 and δ = 1. To achieve Burger number unity, the non-dimensional
rotation and stratification frequencies (Rossby and Froude numbers, respectively) are both set equal to a
second small parameter ϵ < 1. Non-dimensionalization of potential vorticity distinguishes contributions
proportional to (ϵδ)−1, δ−1 and O(1). The (ϵδ)−1 terms are the linear terms associated with the pseudo-
potential vorticity of the quasi-geostrophic limit. For fixed δ = 1/4 and a series of decreasing ϵ, numerical
simulations are used to assess the importance of the δ−1 contribution of potential vorticity to the potential
enstrophy. The change in the energy spectral scalings is studied as ϵ is decreased. For intermediate
values of ϵ, as the flow transitions to the (δϵ)−1 regime in potential vorticity, both the wave and vortical
components of the energy spectrum undergo changes in their scaling behavior. For sufficiently small ϵ,
the (δϵ)−1 contributions dominate the potential vorticity, and the vortical mode spectrum recovers k−3

quasi-geostrophic scaling. However, thewavemode spectrumshows scaling that is very different from the
well-known k−1 scaling observed for the same asymptotics at δ = 1. Visualization of thewave component
of the horizontal velocity at δ = 1/4 reveals a tendency toward a layered structure while there is no
evidence of layering in the δ = 1 case. The investigation makes progress toward quantifying the effects
of aspect ratio δ on the ϵ → 0 asymptotics for the wave component of unit Burger number flows. At the
lowest value of ϵ = 0.002, it is shown that the horizontal kinetic energy spectral scalings are consistent
with phenomenology that explains how linear potential vorticity constrains energy in the limit ϵ → 0
for fixed δ.

Published by Elsevier B.V.
1. Introduction

The Boussinesq approximation is a starting point to describe
a fairly broad range of oceanic and atmospheric phenomena,
depending on the choice of parameters [1–3]. The current inves-
tigation is a fundamental turbulence study in the sense that we
address qualitative and quantitative aspects of the rotating Boussi-
nesq equations, rather than attempt to explain a particular geo-
physical phenomenon. Our approach is based on the foundational
work of Kolmogorov, Kraichnan and Yaglom [4–7] in that we are
interested in asymptotic regimes in idealized flowswith the aim of
understanding the physical and spectral space distribution of
fundamental quantities such as energy. Focusing on unit Burger
number Bu = NH/(fL) = 1, our study aims to distinguish unit-
aspect-ratio flows and small-aspect-ratio flows, where f is the
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Coriolis parameter, N is the buoyancy frequency, H (L) is the do-
main height (horizontal length), and δ = H/L is the domain aspect
ratio. Although geophysical flows are usually confined to small-
aspect-ratio domains, idealized numerical studies of the rotating
Boussinesq equations are a mix of calculations performed in do-
mains of unit aspect ratio (e.g., [8–15]) and domains of small aspect
ratio (e.g., [16,17]).

The nature of turbulence under the influence of rotation
and stratification has a long and rich history. As anticipated in
[18,19], the strong stratification limit with Fr → 0, Bu ≫ 1 results
in a closed, reduced dynamical system involving diffusively
coupled, horizontal layers [20,2]. This layering and the formation
of the so-called vertically sheared horizontal flow (VSHF) have
been systematically observed in decaying [21–23] and forced
scenarios [24–27,10]. With large-scale forcing, it is known that
Bu ≫ 1 flowwith finite small Fr supports a robust forward transfer
of energy. This forward transfer is attributed to the ‘‘unfreezing’’
of ageostrophic cascades [28] and has been numerically verified
[9–11,29,13]. The scaling of the energy spectrum appears to
depend on the nature and dimensionality of the forcing [9,10,29].
The parameter regime of interest here is finite, small Fr with
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Bu = 1. The limiting dynamics for Fr → 0, Bu = 1 are described
by a different closed, reduced dynamical system known as the
quasi-geostrophic (QG) approximation (see [28,30] and further
discussion below). The transition between Bu ≫ 1 and Bu = 1 for
finite, small Fr in a unit-aspect-ratio domain δ = 1 was studied
numerically in [11].

Our numerical calculations are restricted to the cases δ = 1 and
δ = 1/4, with moderate to small values of the Rossby Ro = U/(fL)
and Froude Fr = U/(NH) numbers 0.002 ≤ Ro = Fr ≤ 0.05.
Here both Ro and Fr are based on a velocity scale U imposed by
an external force. For fixed Burger number Bu = 1, decreasing the
domain aspect ratio δ requires increasing the ratio N/f , and we
explore the corresponding change in energy spectral scalings and
flow structure. In some respects, the Bu = 1, δ < 1 flow resembles
flow for Bu = 1, δ = 1 [8], however, other flow features are closer
to stratification dominated flow with Bu ≫ 1 [27,22,9–11,29,31,
32]. It is precisely this dual flow nature that we wish to expose
and quantify. For a given aspect ratio δ, resolution constraints limit
the lower bound for Ro = Fr = ϵ. In addition, it is necessary
to make specific choices for the external force, grid spacing and
dissipation scheme(s). Thus the current study addresses a subset
of the possible numerical studies of Bu = 1 flows. In particular,
only large-scale forcing is considered and we focus on transfer of
energy and potential enstrophy from large to small scales.

The conservation of potential vorticity following fluid particles
is an important constraint on rotating and stratified flows in
the absence of forcing and dissipation [1–3]. The scalar potential
vorticity q(x, t) is given by q = ωa · ∇ρT , where ωa = ω + f ẑ
is the absolute vorticity, ω = ∇ × u is the local vorticity and ρT
is the density with fluctuating part ρ. Conservation of q following
fluid particles means that the component of vorticity along the
direction of the density gradient is advected by the flow, but cannot
be generated or destroyed. This powerful constraint is fundamental
for understanding geophysical flows and is embedded in many
models and theoretical analyses. One of the most famous reduced
equations used for theoretical and modeling purposes is the QG
equation [33]. The QG model describes advection of the linear
part of the potential vorticity qqg = f ∂ρ/∂z − Nω · ẑ , called the
pseudo-potential vorticity. The direction ẑ is the rotation axis and
the direction of stratification. Conservation of pseudo-potential
vorticity qqg is equivalent to advection of a scalar stream function
by the horizontal velocity uh (perpendicular to ẑ). Thus large-scale
QG dynamics of the horizontal flow and the density fluctuations
are determined entirely by a single scalar equation for qqg , together
with an inversion to obtain uh and ρ from qqg . The QG structure
is similar to two-dimensional Navier–Stokes flow for which the
velocity field is given by a single equation for the (scalar) vorticity,
or equivalently the stream function.

The QG approximation, reflecting conservation of linear
potential vorticity, may be derived in several ways. The more
traditional derivation uses a perturbation expansion of the dy-
namical variables in powers of ϵ. Keeping terms to O(ϵ), the QG
equation is a solvability condition (see, e.g. [1]). Another way to
derive the QG approximation is by projection of the full Boussi-
nesq equations onto the vortical linear eigenmodes [34,12]. There
are three types of solutions to the linear, inviscid, unforced Boussi-
nesq equations, which together form an orthogonal basis for the
full nonlinear dynamics: two inertia–gravity wavemodes with op-
positely signedwave frequencies, and the vortical eigenmodewith
zero frequency [8,2,12]. The decomposition into vortical and wave
eigenmodes allows for a convenient formulation of the natural dy-
namical hierarchy in terms of resonant, near-resonant and non-
resonant interactions resulting from the dispersive modulation of
the advective nonlinearity [8,12,13]. The QG model is equivalent
to nonlinear interactions of the vortical modes in the absence of
the inertia–gravitywaves. Rigorous theoretical analysis shows that
the evolution of vortical modes is decoupled from inertia–gravity
waves in the limit Fr = Ro = ϵ → 0 for Bu = 1 [30,28], thus
providing a rigorous foundation for the QG approximation. To de-
scribe finite ϵ flow, models ‘intermediate’ between QG and the
full Boussinesq system have been developed to couple vortical and
inertia–gravity modes (see, e.g., [35–40]). Here we also explore
Bu = 1 flows at finite ϵ, as ϵ is decreased for fixed aspect ratio
δ = 1/4.

We explore approach to the asymptotic regime wherein the
potential vorticity approaches its linear part as ϵ is decreased,
keeping the aspect ratio δ fixed and Bu = 1. Thus the potential
vorticity q(x, t) and the potential enstrophy Q (x, t) = |q(x, t)|2/2
are used to monitor flow development. From the appropriate non-
dimensional expression for q, one could deduce that, compared
to δ = 1, smaller values of ϵ are necessary for the δ < 1 case to
achieve the asymptotic limit in which linear potential vorticity is
dominant. For δ = 1/4, we find that q is dominated by its linear
part for ϵ ≈ 0.002, while quadratic contributions remain impor-
tant for larger values of ϵ. In contrast, for δ = 1, we have observed
that ϵ ≃ 0.007 is sufficiently small to enable near-asymptotic be-
havior of q and Q (see data for larger ϵ reported in [14]) and the
well-known scalings of the energy spectra; indeed decreasing ϵ
further for δ = 1 does not appear to change the qualitative (visual)
or quantitative (spectral) behavior of the flow. For δ = 1 and δ =

1/4, we compare the contribution from inertia–gravitywaveswith
Bu = 1 and ϵ ≈ 0.002. We emphasize that the comparison makes
sense because, in both cases, ϵ is small enough so that potential
vorticity q is dominated by its linear part, and thus an asymptotic
regime in q has been achieved. Since N/f = 4 for δ = 1/4, the
wave component of the flow shows more tendency for horizon-
tal layering than for N = f and δ = 1. While the corresponding
wave mode energy spectrum scales as k−1 for δ = 1 [8], the wave
mode energy spectrum we here compute for δ = 1/4 is steeper,
thus associatedwith larger-scale structures. As ϵ is decreased from
ϵ = 0.05 to ϵ = 0.002, the total and wave mode spectra exhibit
tendencies toward dual scaling in wavenumber k with transition
from steep to shallower scaling. These dual scaling regimes in k for
the wave mode spectra are shown to arise from dominant scaling
in vertical wavenumber kz rather than horizontal wavenumber kh.

Our simulations are most closely related to the rotating
Boussinesq simulations of [8,11,13–16], but with different focus.
In [16], the primary goal was to investigate the atmospheric
spectrum [41], with an attempt to match tropospheric parameters
as closely as possible including the small-aspect-ratio domain. The
others [8,11,13–15] are all numerical studies in a unit-aspect-ratio
domain. The investigation [8] is a benchmark study of geostrophic
adjustment in decaying flow with Bu = 1, showing the spectral
scalings k−3 and k−1 of highwavenumber vortical andwavemodes,
respectively. Further, [8] explains the role of catalytic wave-
vortical-wave interactions for the forward cascade of wave energy
and associated k−1 spectrum. The later work [11] characterizes the
transition from QG-like flow with Bu = 1 to stratified turbulence
with Bu ≫ 1. The simulations in [13] contrasted Bu = 1 (N =

f ) flow with stratification dominated flows (1 < N/f ≤ 5) and
rotation dominated flows (1 < f /N ≤ 5). The numerical work [13]
supports the analytical prediction [28] for qualitatively different
contributions from the catalytic interactions in the regimesBu ≫ 1
and Bu ≪ 1. In [14,15], it is shown how the forward cascade of
potential enstrophy constrains the scalings of potential and
kinetic energy spectra, in rotation and/or stratification dominated
regimes.

In contrast to the aforementioned studies [8,11,13–16], our pur-
pose here is to begin a systematic comparison of Bu = 1 flows
in unit- and small-aspect-ratio domains. The most pronounced
difference is in the scaling of the wave mode spectrum for δ
= 1/4 as compared to the case δ = 1. On the other hand, the
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vortical mode spectra at both aspect ratios recovers 3DQG scaling
of k−3. For δ = 1/4, we also explore the transitions in spectral
scalings as Ro = Fr = ϵ is decreased to sufficiently small values
such that potential vorticity is dominated by its linear piece. The
calculationswe present required approximately 25million proces-
sor hours on the IBM Blue Gene/P supercomputer at Argonne Na-
tional Laboratory, and a further allocation is necessary to expand
the study. At present one can only speculate that further reducing
ϵ < 0.002would not lead to changes in structure and spectral scal-
ing behavior of the wave modes, since the regime of linear poten-
tial vorticity has been achieved. It also remains to systematically
investigate smaller values of the aspect ratio δ.

The remainder of the manuscript is organized as follows. Sec-
tion 2 reviews the governing equations and the non-dimensional
expressions for potential vorticity and potential enstrophy. Sec-
tion 3 discusses our numerical procedure to solve the rotat-
ing Boussinesq equations, our choices for forcing and dissipation
schemes and defines some of the post-processing spectral and
physical space diagnostics used to analyze the data. The results of
numerical simulations are presented and discussed in Section 4. A
summary is given in Section 5.

2. Equations of motion

The dimensional Boussinesq equations for stably stratified flow
in a rotating frame are given by

D
Dt

u + f ẑ × u +
1
ρ0

∇p +
ρ

ρ0
g ẑ = ν∇

2u, (1)

D
Dt

ρ − b(u · ẑ) = κ∇
2ρ, ∇ · u = 0, (2)

where D/Dt = ∂/∂t + u · ∇ is the derivative following fluid
particles and ẑ is the rotation axis as well as the direction
of stratification. Eqs. (1)–(2) follow from conservation of mass,
momentum and energy [1–3], where the dynamical variables
are the velocity u(x, t), the effective pressure p(x, t) and the
fluctuating part of the density ρ(x, t). The total density ρT (x, t)
has been decomposed as ρT (x, t) = ρ0 − bz + ρ(x, t), where
ρ0 is constant, b is also constant and larger than zero for
stable stratification, and assumptions underlying the Boussinesq
approximation are |ρ| ≪ |bz|, and |ρ| ≪ ρ0 with background in
hydrostatic balance ρ0g = ∂p0/∂z. For some geophysical flows,
it is more appropriate to expand around a background potential
temperature instead of density [42] but the form of the equations
remains the same. The dimensional parameters defining (1)–(2)
are the Coriolis parameter f = 2Ω , the buoyancy frequency N =

(gb/ρ0)
1/2, the acceleration of gravity g , the kinematic viscosity ν

and the thermal diffusivity κ . Our simulations will be done in a
periodic domain, with constant f and N .

For an unbounded or periodic domain, the linear eigenmodes
of (1)–(2) are Fourier modes such that [u(x, t); ρ(x, t)] = φm

(k) exp[i(k · x − σm(k)t)] with four-component basis vector
φm(k, t) = [ũm(k, t); ρ̃m(k, t)]. There are three types of eigen-
modes corresponding tom = 0, ±1: the non-wave vortical modes
φ0(k) with σ0(k) = 0; and two wave modes φ±(k) with wave
frequency σ(k) given by the dispersion relation

σ±(k) = ±
(N2k2h + f 2k2z )

1/2

k
(3)

where kh = (k2x + k2y)
1/2 is the horizontal wavenumber. The eigen-

functions themselves are well known (see e.g. [12]) and are given
in the Appendix. The linearized equations conserve the linear part
of the potential vorticity qqg = f ∂ρ/∂z−Nω · ẑ , which is associated
entirely with the vortical modes φ0(k).
The linear eigenmodes serve as a useful orthogonal and
complete basis to represent the solution to the full nonlinear
equations. The decomposition

φ(k, t) = [ũ(k, t); ρ̃(k, t)]

=

−
m=0,±

bm(k, t)φm(k, t) exp[i(k · x − σm(k)t)] (4)

diagonalizes the linear part of (1)–(2), where the amplitudes
bm(k, t) are now the unknowns to be determined. In Fourier space,
(1)–(2) (inviscid for simplicity) become

dbm(k, t)
dt

=

−
k=p+q

−
n,l

Cmnl
kpqbn(p, t)bl(q, t) ei(σm(k)−σn(p)−σl(q))t (5)

where k is discrete in (5) and nonlinear interactions are among
triads with k = p + q. The coupling coefficient Cmnl

kpq is calculated
explicitly from the eigenmodes φm(k):

Cmnl
kpq =

−i
2


(φn

u(p) · q)φ l(q) + (φ l
u(q) · p)φn(p)


· (φm(k))∗, (6)

where ()∗ denotes the complex conjugate and φm
u contains the

first three components of φm corresponding to the velocity entries.
Notice that, with this symmetric definition, Cmnl

kpq = Cmln
kqp .

Our investigation addresses the forward transfer of energy
in (1)–(2) [or equivalently the viscous version of (5)] under the
influence of a large-scale, random force in a small-aspect-ratio
domain with vertical height H smaller than its horizontal length L
such that H/L = δ < 1. The external force is added to the right
hand side of (1)–(2) [or (5) with a viscous term] and will be
described in detail below.

For such a flow, an appropriate non-dimensionalization of
(1)–(2) scales horizontal distances x, y by L, vertical distances z
by H , and all velocity components by a characteristic large-scale
velocityU = (ε/kf )1/3, where the force is localized inwavenumber
with associated energy input rate ε and peak wavenumber kf .
Pressure is scaled by ρ0U2 and density fluctuations by Bρ0 with
B (non-dimensional) constant. Then the non-dimensional form of
(1)–(2) is given by
Dδ

Dt
u + Ro−1ẑ × u + ∇δp + γ ρẑ = Re−1

∇δ · ∇δu,

Dδ

Dt
ρ − γ −1(Fr δ)−2ρw = (Pr Re)−1

∇δ · ∇δρ, ∇δ · u = 0, (7)

where Dδ/Dt = ∂t + u · ∇δ, ∇δ = ∇h + ẑδ−1∂z, ∇h = x̂∂x + ŷ∂y
and we have adopted the shorthand notation ∂i for the partial
derivative with respect to i. The non-dimensional parameters are
the Rossby number Ro = U/(fL), the Froude number Fr = U/
(NH), the aspect ratio δ = H/L, the Reynolds number Re =

UL/ν, the Prandtl number ν/κ and γ = BgL/U2 with constraint
γ = (δFr)−1 for conservation of energy. The latter constraint
selects the appropriate non-dimensional coefficient B in terms of
the characteristic (imposed) velocity U by the consistency relation
B = U(gρ0/b)−1/2.

As is well known, the inviscid, non-diffusive limit of the Boussi-
nesq equations conserves potential vorticity q = (ω + Ro−1ẑ)
· ∇δρT following fluid particles:

Dδ

Dt
q =

Dδ

Dt


(Ro δ)−1∂zρ − (Fr δ)−1ω · ẑ + ω · ∇δρ


= 0, (8)

where ω is the relative vorticity ω = ∇δ × u and from now on
all flow quantities are non-dimensional. The constant piece of q
(that is, Ro−1Fr−1) has been dropped since it does not contribute
to the conservation law(s). The linear part qqg = (Ro δ)−1∂zρ −

(Fr δ)−1ω · ẑ is the pseudo-potential vorticity conserved by the
quasi-geostrophic equations in the limit Ro ∼ Fr → 0. In addition,
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Table 1
Some parameters for the numerical simulations of the Boussinesq equations. All simulations were forced with fixed energy input rate εf , at forcing wavenumber kf = 41kz ,
and hyperviscous dissipation with Laplacian to the power 8.

Run # Grid εf δ = H/L f N ϵ = Ro = Fr

1 512 × 512 × 128 1 0.25 108.1 432.4 0.05
2 1024 × 1024 × 256 1 0.25 108.1 432.4 0.05
3 2048 × 2048 × 512 1 0.25 108.1 432.4 0.05
4 2048 × 2048 × 512 1 0.25 540.5 2162 0.01
5 2048 × 2048 × 512 1 0.25 1080 4324 0.005
6 2048 × 2048 × 512 1 0.25 2702.6 10810.3 0.002
7 1024 × 1024 × 256 1 0.25 2702.6 10810.3 0.002
8 640 × 640 × 640 0.5 1 3000 3000 0.0023
the domain-averaged energy E and potential enstrophy Q are
conserved according to

∂tE = ∂t

∫
D
E(x) dx = ∂t

∫
D

1
2
(u · u + ρ2) dx = 0 (9)

∂tQ = ∂t

∫
D

1
2
q2(x) dx = 0 (10)

where

D indicates integration over the domain.

We focus on Burger unity flows with Bu = NH/(fL) = Ro/Fr =

1, fixed aspect ratio δ and decreasing Ro = Fr = ϵ < 1. For
compactness, we rewrite

q = (ϵδ)−1(∂zρ − ω · ẑ) + ω · ∇δρ

= (ϵδ)−1a(x) + δ−1b(x) + c(x), (11)

with definitions

a(x) ≡ (∂zρ − ω · ẑ),
b(x) ≡ (∂zu∂yρ − ∂zv∂xρ + (ω · ẑ)∂zρ),

c(x) ≡ (∂yw∂xρ − ∂xw∂yρ). (12)

In the numerical computations for fixed δ = 1/4 and decreasing
ϵ, we wish to assess the importance of the term δ−1b(x) in (11)
compared to the linear component qqg = (ϵδ)−1a(x). Directly
using q as a probe poses problems because it is sign-indefinite
(noisy) and its global mean is zero for periodic or other boundary
conditions without sources at the boundaries. Therefore, we use
the global potential enstrophy Q as a surrogate to monitor for
asymptotic regimes in q. In the data analysis of potential enstrophy
Q , we compare

Q =
1
2

∫
D
q2dx, (13)

Q[ϵδ,δ] ≡
1
2

∫
D


(ϵδ)−1a + δ−1b

2

dx, (14)

and

Q[ϵδ] ≡
1
2

∫
D
(ϵδ)−2a2 dx. (15)

The subscript [ϵδ, δ] is used to distinguish the contribution to po-
tential enstrophy from q ∼ (ϵδ)−1a(x) + δ−1b(x). The subscript
[ϵδ] is used to distinguish the contribution to potential enstrophy
from the asymptotically dominant linear q ∼ (ϵδ)−1a(x). When
Q ≈ Q[ϵδ,δ], then quite obviously the δ−1b(x)-term remains impor-
tant in the potential vorticity (11). When Q ≈ Q[ϵδ,δ] ≈ Q[ϵδ], then
the asymptotic quasi-geostrophic regime of linear potential vor-
ticity is approached, that is, the δ−1 and O(1) terms in q become
negligible. We study the change in the energy spectra as ϵ is de-
creased and the simulations show transition from an intermedi-
ate ϵ-regime with Q ≈ Q[ϵδ,δ] to the asymptotic regime with
Q ≈ Q[ϵδ]. As shown in [8,13], the wave mode spectrum scales
as k−1 for small enough ϵ in a unit-aspect-ratio domain (δ = 1).
In contrast, in the small-aspect-ratio domain with δ = 1/4, the
wave mode spectrum is steeper, and changes continuously as ϵ
is decreased from ϵ = 0.05 to ϵ = 0.002. For intermediate val-
ues of ϵ such that the potential vorticity (11) is a mix of contribu-
tions from (ϵδ)−1-terms and δ−1-terms and potential enstrophy
is Q ≈ Q[ϵδ,δ], then the wave mode spectrum appears to exhibit
dual scaling regimes with transition from steep to shallower scal-
ing. Even higher resolutions would be necessary for confirmation
of the latter.

3. Numerical simulations

Pseudo-spectral calculations of the Boussinesq equations with
rotation are performed on physically isotropic grids of δ = 1 and
δ = 0.25 aspect-ratio domainswith resolution ranging from 512×

512×128 to 2048×2048×512.We aim to explore how approach
to the asymptotic limit ϵ → 0 is different for δ = 1 and for δ ≪ 1.
If we require isotropic resolution of the smallest resolved scales
(kx)max = (ky)max = (kz)max, then Nx/Nz = Lx/Lz,Nx = Ny and
only modest δ < 1 is computationally feasible, even with rather
large-scale computations by today’s standards (e.g., 2048×2048×

512, see Table 1). With an isotropic grid, it should be possible to
adequately represent stratified turbulence for scales larger than
the Ozmidov scale lO = (εK/N3)1/2, as well as isotropic turbulence
for scales smaller than lO. The quantity εK is the flux of energy
from large to small scales, and lO gives an estimate for the length
scale below which vertical overturning of waves is not prevented
by the stratification. In order to approach the asymptotic regime
in which potential vorticity is linear, it is necessary to consider N
sufficiently large such that the Ozmidov scale and smaller scales
are not resolved in our simulations. Nevertheless, an isotropic grid
is a well-defined choice, which allows, with anticipated additional
resources, the possibility of further grid refinement toward fully
resolved flow for l < lO.

The frequencies f andN are chosen such that the Burger number
Bu = Nδ/f = 1. One simulation is also performed on a unit-
aspect-ratio domain with resolution 6403 in order to present a
comparison with Bu = 1 at unit aspect ratio. The computational
domain has length L = 1 on the horizontal and H = δ in the
vertical. Therefore the horizontal wavenumbers kh are in integer
multiples of 1kh = 2π while the vertical wavenumbers kz are
in integer multiples of 1kz = 2π/δ yielding larger wavenumber
increments in the vertical direction for δ < 1. In all that follows,
magnitudes in kh, kz and k will be reported in units of 2π for
consistency, unless stated otherwise. Implicit in this choice is the
understanding that the distribution of wavenumbers in the z-
direction is sparser than in the horizontal for δ < 1 as described
above. The time-stepping is implicit 4th-order Runge–Kutta with
at least five timesteps per wave period of the fastest wave, that
is 1t = 0.2π/(f + N). The diffusion of both momentum and
density (scalar) is modeled by hyperviscosity of Laplacian to the
8th power in order to extend the inertial scaling ranges. The
Reynolds number in these cases is not computed explicitly but
the hyperviscosity coefficient is dynamically chosen to resolve the
total energy in the largest shell [43,12] at each timestep. Although
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k

kz

h

4

8

4 8

12

16

12 16

Fig. 1. Two-dimensional schematic of allwavevectors forced in shell 3.51kz ≤ k <

4.51kz where1kz = 2π/δ = 4×2π . The forced shell is bound by the dashed lines
and all allowed wavevectors are marked by •. The wavenumber values along the
axes are marked in increments of 2π . For each allowed value of kz = {4, 8, 12, 16}
note that there aremultiple values of kh that result in awavevector within the shell.

this procedure and the use of up to power 8 in the Laplacian is
very common in idealized studies such as this one, one caveat in
using hyperviscosity is related to possible artifacts such as energy
bottleneck and thermalization of the large wavenumbers [44]. We
note that the flow features we observe are functions more of δ, f
and N than of the hyperviscosity. Furthermore the hyperviscosity
power is the same in all simulations thus presumablingmaking any
anomalous behavior common and hence not a factor in identifying
differences between the flows. Certainly it is clear fromsimulations
at unit aspect ratio that we have performed (not reported here)
that using ‘normal’ Laplacian viscosity makes it quite difficult to
discern the substantial spectral scaling ranges which we pursue
in this study. While we are confident that hyperviscosity does not
affect our primary conclusion, we nonetheless cannot completely
rule out the possibility that it has someothermore subtle or hidden
consequences. The Prandtl number in all cases is O(1). The total
energy input rate is fixed at εf = 1 or εf = 0.5 and Ro and Fr are
varied by changing the rotation and stratification rates for fixed
energy input rate which determines the nonlinear timescale. The
simulations are dealiased according to the two-thirds dealiasing
rule.

Our forcing is modeled after the stochastic scheme of [45]
(see also [46] for use of this scheme in 3d isotropically forced
Navier–Stokes turbulence) inwhich thewavenumbers k ≤ 4.51kz
are stochastically forced. This ensures that the phase of each forced
mode changes sufficiently rapidly so that the large scales will be
statistically isotropic. At the beginning of each timestep, we choose
a divergence-free forcing function,

f = ∇ × ∆−1g (16)

where the Fourier coefficients of g , denoted by g̃k , are chosen ran-
domly with uniformly distributed phase and Gaussian distributed
amplitude. Thus the forcing is incompressible, confined to the low
wavenumbers (large scales) in a Gaussian distribution centered at
kf = 41kz with shell width 1kz . That is, for δ = 0.25, kf =

16 × 2π and for δ = 1, kf = 4 × 2π . The forcing magnitude is
such that energy input is equipartitioned between the three veloc-
ity components and the density fluctuations. For δ < 1, since the
width of the forcing is a ‘‘thick’’ shell 1kz , there is a bias in favor
of horizontal wavenumber components. As an example, for kz =

4 × 2π/δ, the shell with thickness 3.5 × 2π/δ ≤ k ≤ 4.5 × 2π/δ
has kh < 16 × 2π . A two-dimensional sketch of this example is
given in Fig. 1. In that figure the black dots indicate all allowed
wavevectors in the 3.5 × 2π/δ ≤ k ≤ 4.5 × 2π/δ band. In or-
der to check whether our results are biased in any way by such
an apparently skewed forcing scheme, we have performed low
resolution 2563 studies at unit aspect ratio with forcing distri-
bution chosen to mimic Fig. 1. The resultant spectra were in-
distinguishable from those computed in simulations at the same
resolution with the standard isotropically distributed forcing
wavenumbers and other flow characteristicswere qualitatively the
same. Thereforewe are somewhat assured that this forcing scheme
does not bias our results in comparison to the case of isotropic forc-
ing in a unit aspect-ratio domain.

Table 1 lists the parameters of the runs analyzed in this work.
Note that, since our forcing inputs energy into all modes, we need
to tuneN and f to sufficiently high values (amaximumfrequency of
10810 in runs 7 and 8) in order to achieve linear q. That is, since our
effective forcing of nonlinear q does not automatically put our flow
into a linear q regimewe have tomove to extremely large values of
N and f which could result in under-resolved near-resonances.We
believe that we have done the best possible analysis given current
resources at these extreme values of N and f while being aware
that calculations at even higher resolution, which we anticipate
for future work, could indeed reveal differences. At our most
extreme run at N = 10 810 we have performed a doubling of
resolution from 1024×1024×256 to 2048×2048×512 to show
that the spectra for the overlapping wavenumbers for those two
simulations appear to have converged (see data analysis section
below for details).

Asmentioned in Section 2, thewave and vortical eigenmodes of
the inviscid, linearized, unforced equations form a complete basis
which can be used, without loss of generality, to represent the
solution to the full nonlinear equations (see (4)–(5)). As will be
shown, a significant difference between small- and unit-aspect-
ratio Bu = 1 flows is found for the energy spectrum associated
with the wave component of the flow. The energy spectra of the
wave and vortical components of the field are, respectively:

E±(k, t) =
1
2

−
m=±

|bm(k, t)|2 (17)

E0(k, t) =
1
2
|b0(k, t)|2. (18)

For a more detailed analysis we can reconstruct, for example, the
physical spacewave and vortical contributions of the x-component
of the velocity (which we will call the zonal component) as:

u±

1 (x, t) = ifft

−
m=±

bm(k, t)φm
1 (k) exp[(ik · x − σm(k)t)]


(19)

u0
1(x, t) = ifft(b0(k, t)φ0

1(k) exp[(ik · x − σm(k)t)]) (20)

where ifft is compact notation denoting the inverse Fourier
transform over all k. The horizontal kinetic energy spectrum of the
flow can also be decomposed as:

E±

h (k, t) =
1
2

−
i=1,2

−
m=±

|bm(k, t)φm
i (k)|2 (21)

E0
h (k, t) =

1
2

−
i=1,2

|b0(k, t)φ0
i (k)|2. (22)

With φm
i = ũm

i for i = 1, 2, 3 and φm
i = ρ̃m for i = 4, the vertical

velocity and the scalar can thus be analogously decomposed. The
definitions (17)–(22) will be used in Section 4 in our analysis of the
physical and spectral space field for the horizontal velocity.

All runs and visualizations were performed using the computa-
tional resources at Argonne Leadership Computing Facility (ALCF,
Argonne National Laboratory) on the Blue Gene/P (Intrepid) ma-
chine. The most computationally intensive run 6 used about 15
million CPU hours. All the runs together required approximately
25 million CPU hours.
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Fig. 2. Study of increasing grid resolution for δ = 0.25 and moderately small ϵ = 0.05. Evolution in time of total potential enstrophy Q , and contributions Q[ϵδ,δ] and Q[ϵδ]

for (a) run 1, grid 512× 512× 128 (b) run 2, grid 1024× 1024× 256 and (c) run 3, grid 2048× 2048× 512. In all cases the desired asymptotic regime of Q ≃ Q[ϵδ,δ] ≃ Q[ϵδ]

has clearly not been achieved, suggesting that ϵ is not small enough.
4. Data analysis

4.1. Increasing grid resolution for ϵ = 0.05 and δ = 0.25

We first study the effect of increasing resolution (with
corresponding increase in Reynolds number based on the ratio of
nonlinear to hyperviscous terms) for fixed δ = 0.25 and moderate
ϵ = 0.05. Runs 1, 2 and 3 are a series of simulations for isotropic
grid and grids 512 × 512 × 128, 1024 × 1024 × 256 to 2048 ×

2048×512, doubling resolutionwith each increasing in number of
grid points. Since the hyperviscosity coefficient scales according to
the scheme of [43] (see above) our Reynolds number is effectively
increasing in this series of runs. Fig. 2 shows the evolution of
potential enstrophy in time as resolution increases (panels (a)–(c)).
While the potential enstrophy saturates in time for all three cases,
it is clear that the asymptotic regime of Q ≃ Q[ϵδ,δ] ≃ Q[ϵδ]

corresponding to linear q has not been achieved for ϵ = 0.05.
Fig. 3 shows thewave (Eq. (17)), vortical (Eq. (18)) and total energy
spectra (panels (a)–(c)) as the resolution increases.We see that the
wave spectra have not converged at any of the scales with scaling
ranging from k−4/3 at the lowest resolution and k−5/3 at the highest
resolution. The vortical spectra have converged in the range over
which the wavenumbers of the three resolutions overlap with
scaling in that range slightly shallower than k−3. The extended
range for the vortical spectra showa significant shallowing for runs
2 and 3. These observations indicate that the neither the wave nor
the vortical mode energies have achieved the asymptotic behavior
expected for ϵ → 0. Panel (d) of Fig. 3 puts the wave, vortical and
total energies together for the highest resolution run 3 showing
the clear dual range scaling of the vortical energy from slightly
shallower than k−3 tomuch shallower, and the nearly k−5/3 scaling
of the wave energy. For fixed, moderately small ϵ = 0.05, this
study in increasing resolution shows that the small scales of the
flow are still affected by nonlinear potential vorticity.

4.2. Decreasing Ro = Fr = ϵ for fixed δ = 0.25 and fixed resolution

We next study the effect of tuning ϵ down to smaller values for
fixed aspect ratio δ = 0.25, fixing the resolution at the highest
available, 2048×2048×512. The aim is to discover what happens
in the intermediate and asymptotic regimes as linear q (quadratic
potential enstrophy Q ) is achieved. Fig. 4 shows the evolution in
time of potential enstrophy as ϵ decreases from0.05 down to 0.002
(panels (a)–(d), runs 3, 4, 5 and 6). As ϵ decreases by a factor 5
from 0.05 to 0.01 (runs 3 and 4 in panels (a) and (b)) we see that
Q ≃ Q[ϵδ,δ] indicated by the coincidence of the solid line and the
×’s. This indicates that the flow has achieved an intermediate state
wherein contributions to q from theO(δ) terms are still significant.
As ϵ is reduced to 0.005 (panel (c)) theQ ≃ Q[ϵδ,δ] behavior persists
but the asymptotic regime of Q ≃ Q[ϵδ,δ] ≃ Q[ϵδ] has still not
been achieved as shown by the peeling away of the dashed line
from the solid line and ×’s. Note also that the potential enstrophy
in run 5 has not achieved steady state. However, given that the
trend away from the asymptotic state of linear q seemed clear, we
terminated run 5 in the interest of pursuing an even lower ϵ case.
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(a) Wave energy spectra for ϵ = Ro = Fr = 0.05 as resolution is
increased from run 1 through run 3. As the resolution (effectively
the Reynolds number) increases and more wavemodes are resolved,
the scaling of the wave spectrum steepens from k−4/3 to k−5/3 .

(b) Vortical energy spectra for ϵ = Ro = Fr = 0.05 as resolution is
increased from run 1 through run 3. As the resolution increases the
scaling of the vortical energy spectrum which initially scales as k−3

develops a second shallower scaling range in the high
wavenumbers.

(c) Total (wave plus vortical) energy spectra for ϵ = Ro = Fr = 0.05
as resolution is increased from run 1 through run 3.

(d) Wave, vortical and total energy spectra for Ro = Fr = 0.05
at the highest resolution, run 3.

Fig. 3. For Ro = Fr = 0.05 and δ = 0.25, a comparison of wave, vortical and total (wave plus vortical) energy spectra for (a) run 1, (b) run 2 and (c) run 3 at latest
times t = 3, 4.6 and 2.4 respectively, showing the trend as resolution (effectively the Reynolds number) is increased. In all cases, the modes k > kf have achieved (nearly)
statistically steady state. Panel (d) shows the wave, vortical and total spectra for the highest resolution run 3.
At the lowest values of ϵ = 0.002 (run 6, panel (d)) we see clearly
that Q ≃ Q[ϵδ,δ] ≃ Q[ϵδ] thus indicating that potential enstrophy
has achieved its asymptotic quadratic value. It is this case that we
will explore further as the cornerstone in our study of Bu = 1 for
small aspect ratio and asymptotically small ϵ.

The evolution of the wave, vortical and total energies in time
corresponding to the study in decreasing ϵ are given in Fig. 5.
Progressing from panels (a) through (d) we note that the wave
energy, expected to dominate the small scales, has saturated for
the two larger values of ϵ ((a) and (b)) but is still growing, albeit
quite slowly for the two small ϵ ((c) and (d)). Thus, for the
smallest ϵ cases, by one measure of the small scales, namely the
potential enstrophy, the small scales have saturated (see Fig. 4(d)).
However, by the measure of wave energy, the small scales (high
wavenumbers) have not achieved strictly statistically steady state.
The vortical energy in all cases is expected to grow in the low
wavenumbers, and sincewe do not have a sink for the energy in the
lowwavenumberswedonot expect the vortical energy to saturate,
consistent with observations.

The spectra of the wave, vortical and total energies for de-
creasing ϵ are given in Fig. 6. In each case we plot the spectra
at the latest time for a particular run since for the two lowest
ϵ the wave spectra for k > kf are not statistically steady but are
still slowly growing. Thus we would not be justified in present-
ing time-averaged spectra in these cases. Progressing from (a) to
(d) for decreasing ϵ in Fig. 6, we note that the vortical energy
transitions smoothly from a dual scaling of nearly k−3 followed
by a much shallower range (panel (a)), to a k−3 scaling over the
entire k > kf range (panel (d)). This is the classical QG scaling of
the vortical modes expected as q becomes asymptotically linear
and is identical to what one observes for small ϵ at δ = 1 (see
discussion below). However, as ϵ is decreased, the wave energy
spectra settle on a final distribution quite different from what is
known for the δ = 1 case. From the largest ϵ = 0.05 case in
panel (a) where the wave spectrum scales approximately as k−5/3,
it transitions through a regime where it scales nearly as k−2 fol-
lowed by a range of pile-up of energywith no distinguishable ‘scal-
ing’. And finally at ϵ = 0.002 it settles to a k−2.5 scaling followed
by a shallower range of approximately k−4/3. In all the scalings
discussed, note that the lines shown in the graphs are to be used as
a guide to the eye rather than as strict measurements. We do not
provide exact measurements of scaling exponents in these previ-
ously unexplored regimes, apart from the known k−3 for 3DQG, as
we do not have any expectations or comparisons to validate.

As we have noted above, the case for smallest ϵ at the
highest resolution (run 6) achieved steady state for total potential
enstrophy, but not for the wave energy in time. This is reflected
in our observation that the wave energy spectrum for this run
is still very slowly growing in time in the high wavenumbers.
This could be a result of not having run long enough, however,
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Fig. 4. Study of decreasing ϵ for fixed δ = 0.25 and fixed resolution 2048 × 2048 × 512. Evolution in time of total potential enstrophy Q , and contributions Q[ϵδ,δ] and
Q[ϵδ] for (a) run 3, ϵ = 0.05, (b) run 4, ϵ = 0.01, (c) run 5, ϵ = 0.005 and (d) run 6, ϵ = 0.002. As ϵ decreases, Q ≃ Q[ϵδ,δ] (panels (b, c, d)). The asymptotic regime of
Q ≃ Q[ϵδ,δ] ≃ Q[ϵδ] is only observed in panel (d) for the lowest value of ϵ = Ro = Fr = 0.002, where the solid line, ×’s and dashed line lie indistinguishably on top of each
other.
running longer could introduce contamination by the developing
large scales. It is also possible that we are still under-resolved
at 2048 × 2048 × 512 and thus not adequately resolving wave-
interactions at these extreme values of N and f . Thus we ran an
extra case (run 7) at half the grid resolution of run 6 keeping N
and f fixed. The wave, vortical and total spectra of both runs 6 and
7 are plotted together at t = 4.2 in Fig. 7. For k < 300 which
is approximately kmax for run 7, the wave spectrum indeed shows
a scaling of near k−2.5 and appears to have converged. While this
does not rule out under-resolution effects for k > 300 in run 6, it
fairly definitively establishes a wave spectral scaling much steeper
than the k−1 observed at unit aspect ratio. Our main point is that
the wavemodes for δ < 1 behave differently than the wavemodes
for δ = 1 in the asymptotically small ϵ regime; we believe that this
has been established to the extent possible with our significant use
of computational resources.

For completeness, we present the potential enstrophy and
spectra for the case δ = 1, run 8. These results have already been
reported in [14,15] and similar results are familiar from many
studies of this regimes, but are repeated here for convenience.
In unit aspect ratio, the leading order contribution to q in the
linear regime is O(ϵδ) = O(ϵ). Correspondingly, Fig. 8(a) shows
that indeed we are in the nearly quadratic Q (linear q) in our
unit-aspect-ratio run and that the global potential enstrophy
has reached statistically state. Fig. 8(b) shows that the wave
component of the energy has also saturated while the vortical
component has not. The latter is expected given that there is no
sink for the energy in the large scales. Fig. 8(c) shows the familiar
k−1 scaling of thewave energy spectrum, and the k−3 scaling of the
vortical energy spectrum in the flow.When comparedwith the run
6 for δ = 0.25 it is clear that the difference between the Bu = 1
flows lies in the wave component while the similarity lies in the
3DQG scaling of the vortical component.

4.3. Physical and spectral space analysis of horizontal velocity

In further investigation, we compare the properties of the
horizontal flow velocity of the δ = 0.25 case as compared to the
δ = 1 case at ϵ ≃ 0.002. Specificallywewill look at the eigenmode
decomposition of the horizontal velocity, separating the wave
and vortical components, and compare the physical space visual
flow characteristics, spectra of the wave component and certain
phenomenological aspects. We project the wave component of the
zonal velocity in physical space according to Eq. (20) at the latest
times for runs 6 and 8. A similar procedure is performed for the
vortical field. In Fig. 9 we show a comparison between runs 6 and
8 for the total, vortical and wave projections of the zonal velocity
field. The visualizations are of surface contours with the starkest
difference appearing between the wave components (panels (e)
and (f)) of the two flows. The δ = 0.25 flow shows a distinct
layered structure over the vertical width of which the sign of the
velocity changes (red to blue). This layered structure is different
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Fig. 5. Study of decreasing ϵ for fixed δ = 0.25 and fixed grid resolution 2048 × 2048 × 512. Evolution in time of wave, vortical and total energies for (a) run 3, ϵ = 0.05,
(b) run 4, ϵ = 0.01, and (c) run 5, ϵ = 0.005, (d) run 6, ϵ = 0.002.
from the VSHF associated with Bu ≫ 1 flows because the layers
do not extend the entire width of the box and the flow does not
have a strong kh = 0 component (see Fig. 7). We also zoom in on
a 512 × 512 × 512 subset of run 6 at latest time and show the
zonal velocity surface contours in Fig. 10, again for total, wave and
vortical projections. The layered structure of the wave component
is again apparent.

Given the distinct appearances of the wave component of the
horizontal flow in visualizations of the two Bu = 1 flows for small
ϵ, we next compare the spectral distribution in wavenumber of
the horizontal wave energy. We plot the horizontal wave energy
of run 6 (δ = 0.25) both as a function of kh (summed over kz)
and as a function of kz (summed over kh). The result is shown
in Fig. 11(a) with a similar plot for run 8 (δ = 1) in Fig. 11(b)
for comparison. In both runs the wave energy as a function of kh
saturates for kh < kf (dashed lines) while the behavior in kz drops
off sharply as kz < kf (solid lines). The similarities end there. The
small-scale behavior is completely different for the two flows. For
the δ = 0.25 flow the horizontal wave energy spectrum decays as
k−2
h while for δ = 1 the spectrum decays as k−1

h . In both cases the
wave energy spectrum as a function of kz (solid line) contains the
majority of the downscale (high wavenumber) energy. Again the
similarities end there because the distribution of energy in kz in (a)
shows a dual scaling regime of k−2

z followed by a regimewithmuch
shallower scaling, almost a ‘pile-up’, whereas in (b) there scaling is
approximately k−1

z albeit with a slightly longer scaling regime than
in kh, with no evidence of a second scaling range.
4.3.1. A phenomenology for spectral scaling of horizontal kinetic
energy

In this section we describe a phenomenological model for
the horizontal kinetic energy spectra in the asymptotic limit of
ϵ → 0 for δ < 1. The model was first proposed for δ = 1 in [14]
for Bu = 1, and extended to Bu ≪ 1 and Bu ≫ 1 [15]. We will
here sketch how it can be extended consistently to the δ < 1 case.
For flow in the linear potential vorticity regime, dimensionally, the
potential vorticity is,

in physical space q = f ∂zρ − Nω · ẑ (23)

and in Fourier q̃ = −i(fkz ρ̃ − Nkh × ũh) ≃ −i(fkz ρ̃ − Nkhũh) (24)

where the last ≃ is allowed by the empirically observed smallness
of the vertical velocity in such flows for large N . We define the
parameter

Γ (k) =
fkz
Nkh

(25)

where kh and kz are the horizontal and vertical components of the
wavevector respectively. The parameter Γ picks out the relative
importance of rotation to stratification in the potential vorticity
with respect to scale. The value Γ = 1 is defined by the surface
of a cone in spectral space with angle φ to the vertical given by
tan(φ) = kh/kz = f /N . For fixed f and N , wavevectors k giving
Γ ≪ 1 lie outside the cone, while those giving Γ ≫ 1 lie inside
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Fig. 6. Wave, vortical and total energy spectra for fixed δ = 0.25, fixed grid 2048 × 2048 × 512 and (a) run 3, ϵ = 0.05 (b) run 4, ϵ = 0.01, (c) run 5, ϵ = 0.005 and
(d) run 6, ϵ = 0.002. In each case the spectra are plotted at the latest time of the run, after both the total potential enstrophy and the wave energy in modes k > kf have
achieved (nearly) statistically steady state. As ϵ is decreased the vortical mode energy recovers k−3 scaling of 3DQG throughout the range k > kf , while the wave mode
energy spectrum steepens through a range of transient behaviors finally settling on a scaling of about k−2.5 followed by a second, much shallower range. The scaling lines
indicated are given as guides to the eye.
the cone (see Fig. 12). The extreme case of stratification dominated
flows f /N ≪ 1 for a finite box such that f /N ≪ kh/kz for a wide
range of k, gives a very narrow critical cone with wavenumbers ly-
ing mostly outside the cone (Γ ≪ 1) and scaling in k becomes
independent of kz . The opposite extreme case of rotating domi-
nated flows f /N ≫ 1 gives a very wide critical cone with wave-
numbers lying mostly inside the cone (Γ ≫ 1) and the scaling in
k becomes independent of kh for a finite box size.

The Bu = 1 cases we consider do not fall in the extreme f /N
regimes and therefore are expected to exhibit some intermediate
behavior in kh and kz . In our run 6, for Bu = 1 and δ = 0.25
we have f /N = 0.25. For this flow Γ = 1 is a cone of angle
φ = arctan(f /N) = 14° = 1/4 rad. In our unit-aspect-ratio run
8, Bu = 1 and δ = 1 we have f /N = 1, and Γ = 1 is a cone
of angle φ = arctan(f /N) = 45° = π/4 rad. The two critical
cones are shown in Fig. 12. It is immediately apparent that for the
δ = 1 case on the left, the wavenumbers are distributed evenly
on both sides of the critical cone and we thus expect that neither
stratification nor rotationwill dominate. This is consistentwith the
visualizations of the flow which do not exhibit either columnar or
layered structures. For the δ = 0.25 case on the right of Fig. 12,
a small majority of wavenumbers will fall in the Γ ≪ 1 sector
thus giving a slight preference for the stratification part of linear q.
In this sense one can see that stratification effects might be some-
what dominant in aspects of the flow at Bu = 1 for small aspect
ratio.
Fig. 7. Runs 6 and 7, doubling resolution for ϵ = 0.002. Spectra are plotted at the
same time t = 4.2 and show reasonable convergence for k < 300, the maximum
k for the lower resolution case. This plot also shows that the energy of the kh = 0
wave modes are the negligible contribution to the total energy.

We here briefly review the relevant parts of the phenomeno-
logical discussion for Γ ≪ 1, the details of which may be found in
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Fig. 8. For run 8 at unit aspect ratio δ = 1, and Ro = Fr = 0.0023, (a) potential enstrophy evolution showing that Q ≃ Q[ϵδ]; (b) evolution in time of the wave, vortical and
total energies and (c) wave, vortical and total energy spectra. The vortical energy achieves 3DQG scaling of k−3 while the wave energy scales as k−1 . The spectra are plotted
at the latest time of the run after the total potential enstrophy and the wave energy in modes k > kf have achieved statistically steady state.
[14,15]. When the stratification component of linear q dominates
in a Fourier mode k, one can write:

stratification dominates q q̃(k) ≃ iNkhũh, (26)

and Q (k) ≃
1
2
|Nkhũh|

2, (27)

with constraint lim
κh→∞

∫
∞

κh

Q (k)dkh ≫ N2κ2
h

∫
∞

κh

Eh(k)dkh. (28)

Eq. (28) is interpreted to mean that for wavevectors with large
kh, that is the ‘wide’ wavevectors, the potential enstrophy Q (k)
dominates the downscale (horizontal scales smaller than 1/κh)
dynamics and consequently suppresses the transfer of horizontal
kinetic energy into those modes. This is analogous to the relation
in 2d turbulence

lim
κ→∞

∫
∞

κ

Ω(k)dk ≫ κ2
∫

∞

κ

E(k)dk (29)

wherein the enstrophy Ω(k) suppresses the downscale transfer
of kinetic energy E(k) for sufficiently high wavenumber κ , and in
turn forces the inverse cascade of energy. More generally, for fixed
f /N there is a transition regime when kh/kz ≃ f /N . Thus, in an
idealized infinite wavenumber flow, for fixed f /N there will be
some regime of wavevectors such that kh/kz ≫ f /N for which
Γ ≪ 1 and horizontal kinetic energy is suppressed along kh. The
range in k-space over which Γ ≪ 1 depends on where the critical
cone Γ = 1 lies and the difference for the two Bu = 1 cases is
apparent from Fig. 12.

For Γ ≪ 1 the potential enstrophy suppresses transfer of hor-
izontal kinetic energy to the large kh for small kz resulting in a
prediction for steep drop-off in energy in kh. In [14,15] we mea-
sured empirically the scaling to be Eh(kh, kz) ∼ k−5

h for small kz .
In Fig. 13(a) we plot Eh(kh, kz) as a function of kh for various fixed
kz . Observe that for kz/kh < N/f = 4, the horizontal kinetic en-
ergy spectrum steepens to very close to k−5

h . However, since the
range of steep scaling depends on kz , the net effect on Eh(kh, kz),
when summed over kz , gives a shallower k−2.5

h scaling of Eh(kh)
(Fig. 13(b)).

In Fig. 14 the horizontal kinetic energy is plotted for δ = 1, run
8, showing qualitatively very similar behavior as for the δ = 0.25
case (Fig. 13), except that, because the scaling transition to steep
k−5
h behavior happens as kz/kh < N/f = 1, the shape of the spec-

trum when summed over kz is different from the δ = 0.25 case,
even though Bu = 1 in both cases. The greater area associatedwith
Γ ≪ 1 for Bu = 1, δ = 0.25 in Fig. 12 (the stratification domi-
nated potential vorticity regime), is consistent with the observed
evidence of layered structure in Fig. 9(e).

5. Conclusions

We have performed high resolution, computationally intensive
simulations of the Boussinesq equations with rotation, character-
ized by isotropic grids in physical space and at least five timesteps



160 S. Kurien, L.M. Smith / Physica D 241 (2012) 149–163
Fig. 9. (Color online) Visualization comparing surface contours of the x-component of the velocity for δ = 0.25, ϵ = 0.002, run 6 (a, c, e) and δ = 1, ϵ = 0.0023, run 8
(b, d, f). For each δ the total (top row), vortical (middle row) and wave (bottom row) components of the flow are visualized. Red indicates flow along positive x-direction and
blue its reverse. The comparison of wave mode velocity in particular (panels (e) and (f)) illustrates the qualitative difference between small-aspect-ratio flow which has a
layered structure, and unit-aspect-ratio flow which has no layered structure, for almost equal ϵ and Bu = 1.
per period of the fastest wave frequencies. Our study initiates a
quantitative comparison of the small scales of Bu = 1 flows with
small aspect ratio δ ≪ 1 and unit aspect ratio δ = 1, for low
wavenumber (large-scale) forcing, and with f and N tuned to val-
ues such that potential enstrophy approached regimes consistent
with linear potential vorticity. For δ = 1/4 and δ = 1, we have
shown that the two flows are similar in some respects and very
different in others. The energy of the vortical mode in small scales
is qualitatively (visually) and quantitatively (in terms of scaling of
the spectra) the same. The difference between the two flows arises
in the wave component which exhibits a layered structure for the
δ = 0.25 case and scaling steeper than k−1 in the wave energy
spectrum. Since k−1 has been expected and observed in numer-
ous studies for the wave energy at δ = 1, we conclude that the
ϵ → 0 asymptotics in Bu = 1 flows are perhaps non-universal and
depend on the aspect ratio even for asymptotically small ϵ. We
hope that this work motivates more rigorous theoretical under-
standing of these issues.
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Fig. 10. (Color online) Run 6 (δ = 0.25, ϵ = 0.002), 512 × 512 × 512 subset showing (a) total, (b) vortical and (c) wave components of the zonal velocity.
Fig. 11. Comparison of the wave component of horizontal kinetic energy as a function of kh and kz for (a) run 6, δ = 0.25 and (b) run 8, δ = 1. Note the steeper scaling in
(a) as well as the appearance of a second scaling range as a function of kz .
It must be noted that the layered structure for δ < 1 is different
from the kh = 0 wave modes (VSHF) since the contribution of
thosemodes to the flow is insignificant. Thus, the layered structure
that is often connected with the large scales in strongly stratified
flows is here observed in a slightly different form. Future work
will explore integral length scale measurements to characterize
the differences in flow structure observed in Fig. 9 for δ = 1 and
δ = 1/4, as well as the case Bu = 4 with δ = 1. Other avenues
for future work include flow response to small-scale forcing and
investigation of even smaller aspect ratios.
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Appendix

The eigenfunction φ+ corresponding to σ+ in (3) is

φ+
=

1
√
2σk

×


kz
kh


σkx + ikyf


,
kz
kh


σky − ikxf


, −σkh, −ibkh


(30)

where σ = |σ±(k)|. The eigenfunction φ− corresponding to σ− in
(3) is the complex conjugate of φ+. The vortical mode φ0 with zero
frequency (σ0 = 0), is given by

φ0
=

1
σk


Nky, −Nkx, 0, fbkz/N


. (31)

Two special cases must be considered: (i) kh = 0 and (ii) kz =

N = 0. For special case (i) kh = 0, when the wavevector is parallel
to the rotation and stratification axis, orthonormal eigenfunctions
satisfying continuity are

φ+
=


1 + i
2

,
1 − i
2

, 0, 0


,

φ−
= (φ+)∗, φ0

= (0, 0, 0, b/N)

(32)

where ()∗ denotes complex conjugate. These are the vertically
sheared horizontal flow modes or VSHF modes. They have no
vertical vorticity and no potential vorticity. They also have no
vertical velocity because of the continuity constraint∇ ·u = 0. The
wave frequencies corresponding to φ+ and φ− are, respectively,
σ+ = f and σ− = −f . Density fluctuations represented by φ0 have
zero frequency σ0 = 0. Special case (ii), kz = N = 0, corresponds
to pure rotation with wavevector perpendicular to the rotation
axis. In this case, the eigenmodes are all slow (geostrophic) modes
with zero frequency σ+ = σ− = σ0 = 0, taken as

φ+
=

1
√
2kh


iky, −ikx, −kh, 0


,

φ−
= (φ+)∗, φ0

= (0, 0, 0, b/N).

(33)
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